Facile Synthesis of Alkenylsilanes from Organic Halides and Vinylsilanes in the Presence of Triethylamine and Palladium Catalysts

Hiroshi YAMASHITA, Bella L. ROAN, and Masato TANAKA* National Chemical Laboratory for Industry, Tsukuba, Ibaraki 305

Organic halides such as PhI, ArBr, and β -bromostyrene reacted with di- or monochlorovinylsilanes or triethoxyvinylsilane in the presence of triethylamine and palladium catalysts to give β -substituted vinylsilanes in excellent to moderate yields.

Alkenylsilanes are useful reagents which allow numerous synthetic applications. Hallberg et al. previously reported palladium-catalyzed Heck reactions of organic iodides (RI) with trimethylvinylsilane affording β -substituted vinylsilanes (RCH=CHSiMe3). However, the necessity of one equivalent of silver nitrate per mole of an organic iodide is the major drawback of the method; the absence of silver nitrate causes extensive desilylation leading to simple vinylated products (RCH=CH2). We have now found unexpectedly that the Heck type reaction normally proceeds in the absence of the silver salt when the starting vinylsilane has electronegative substituents attached to the silicon.

A typical reaction procedure is as follows. A mixture of 1-bromonaphthalene (50 mmol), dichloromethylvinylsilane (55 mmol), triethylamine (30 cm³) and PdCl₂(PPh₃)₂ (0.14 mmol) was heated in a sealed glass vessel at 120 °C for 24 h. The precipitate formed in the reaction was removed by filtration and washed by hexane (80 cm³). The filtrate and the hexane washing were combined and concentrated under reduced pressure. Distillation of the residue afforded trans-1-[β -(dichloromethylsilyl)vinyl]naphthalene (40.2 mmol, 80.3%). Anal. Found: C, 58.55; H, 4.60%. Calcd for C₁₃H₁₂SiCl₂: C, 58.42; H, 4.54%.

Likewise, other β -substituted vinylsilanes with trans geometry are produced from various organic halides in excellent to moderate yields (Eq. 1, Table 1). In these reactions small amounts of simple vinylated com-

RX +
$$SiR'_3$$
 + Et_3N $\xrightarrow{Pd \ cat.}$ R SiR'_3 + Et_3NHX (1)
$$R'_3 = MeCl_2, Me_2Cl, (OEt)_3$$

pounds were also formed. Although the mechanism of simple vinylation is ambiguous, the electronegative substituents in vinylsilanes significantly inhibit the desilylation process; the reaction of bromobenzene with dichrolomethylvinylsilane gave much smaller amount of styrene (1.1%) than with chlorodimethylvinylsilane (19.4%) as estimated by GC analysis. In the present reactions both PdCl₂(PPh₃)₂ and Pd(PPh₃)₄ were effective catalysts except for the case of bromothiophene which hardly reacted with dichloromethylvinylsilane in the presence of Pd(PPh₃)₄.

In conclusion, palladium-catalyzed Heck reactions of organic halides efficiently proceeded by using di- or monochlorovinylsilanes or triethoxyvinylsilane affording alkenylsilanes. Since the products contain reactive

Halides	Vinylsilanes	Products ^{b)}	Bp θb∕°C (mmHg)	Yields ^{c)} / %
PhI ^{d)}	SIMeCl ₂	Ph SiMeCl ₂	84 (1.0)	76.7
PhBr	SIMeCI ₂	Ph SIMeCl ₂	84 (1.0)	76.0 (97.2)
Me——Br	SiMeCl ₂	Me-SiMeCl ₂ f)	89 (0.6)	59.4 (76.7)
CI—Br	SiMeCl ₂	CI—SIMeCl ₂ f)	120 (1.0)	70.2 (93.6)
Br	∕ SiMeCl₂	SiMeCl ₂ f)	137 (0.6)	80.3
$\sqrt[n]{s}$ Br	∕ SiMeCl₂	SiMeCl ₂ f)	75 (0.7)	40.9
PhBr	∕ SiMe₂CI	Ph SiMe ₂ Cl	82 (0.9)	34.4 (59.7)
PhBr	SiMePhCl	Ph SiMePhCI f)	132 (0.5)	30.7 (79.6)
PhBr ^{e)}	Si(OEt) ₃	Ph Si(OEt) ₃	110 (0.6)	69.1
Ph Mer	SiMeCl ₂	Ph SiMeCl ₂ f)	108 (0.3)	66.1

Table 1. Reactions of Organic Halides with Vinylsilanes in the Presence of Triethylamine and Palladium Catalysts ^{a)}

chlorine atoms or ethoxy groups, they are useful not only as synthetic reagents but also as monomers for functional organosilicon polymers.³⁾ Further extension to the synthesis of bis[β -(chlorosilyl)vinyl]arenes and relevant polymers is under way.

References

- 1) For instance, see W. P. Weber, "Silicon Reagents for Organic Synthesis," Springer-Verlag, Berlin (1983).
- 2) a) K. Karabelas and A. Hallberg, *J. Org. Chem.*, **51**, 5286 (1986); b) K. Karabelas and A. Hallberg, *ibid.*, **53**, 4909 (1988); c) A. Hallberg and C. Westerlund, *Chem. Lett.*, **1982**, 1993.
- 3) J. Oshita, D. Kanaya, M. Ishikawa, and T. Yamanaka, J. Organomet. Chem., 369, C18 (1989), and references cited therein.

(Received September 4, 1990)

a) Reaction conditions: halide (50 mmol), vinylsilane (55 mmol), triethylamine (30 cm³), $PdCl_2(PPh_3)_2$ (0.14 mmol), 120 °C, 22-100 h. b) trans/cis = >98/2. c) Isolated yields. Figures in parentheses are GC yields obtained in the reactions of aryl halides (0.5 mmol) with vinylsilanes (0.55 mmol) in the presence of triethylamine (0.3 cm³) and $PdCl_2(PPh_3)_2$ (0.005 mmol) at 120 °C for 17 h. d) PhI (45 mmol), CH_2 =CHSiMeCl₂ (100 mmol), $PdCl_2(PPh_3)_2$ (0.37 mmol), 100 °C, 20 h. e) $Pd(PPh_3)_4$ (0.14 mmol) was used. f) All new compounds gave satisfactory spectral data.